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Abstract
Experimental and theoretical results on chemical functionalization of graphene are reviewed.
Using hydrogenated graphene as a model system, general principles of the chemical
functionalization are formulated and discussed. It is shown that, as a rule, 100% coverage of
graphene by complex functional groups (in contrast with hydrogen and fluorine) is unreachable.
A possible destruction of graphene nanoribbons by fluorine is considered. The functionalization
of infinite graphene and graphene nanoribbons by oxygen and by hydrofluoric acid is simulated
step by step.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Chemical functionalization is one of the main methods
to manipulate the physical and chemical properties of
nanoobjects [1–10] and to study mechanisms of interaction of
the nanoobjects with their environment (e.g. to investigate
the stability of desired properties with respect to oxidation,
hydrogenation, etc). Initially, graphene was used by
theoreticians as a simple model to describe properties of
nanotubes [11–17]. After the discovery of graphene [18]
and of its extraordinary electronic properties [19–22] the
chemical functionalization of graphene became a focus of
especial interest in contemporary chemical physics. The main
motivations of these studies are (i) modification of electronic
properties via opening the energy gap in the electron spectrum
of single and bilayer graphene [23–31, 139, 149]; (ii) potential
use of graphene for hydrogen storage [23, 24, 32–35, 100];
(iii) decoration of various defects in graphene [11, 37–41];
(iv) a way to make graphene magnetic for potential use
in spintronics [42, 43, 24, 44, 41, 45]; (v) a search for
ways to produce ‘cheap graphene’ by chemical reduction of
graphite oxide and manipulation of its electronic [46–48]
and mechanical [49–51] properties; (vi) the functionalization
of graphene edges in graphene nanoribbons [52–70] and
their protection [41]; and (vii) oxidation and cracking of
graphene [71] as tools to create graphene nanostructures of a
given shape [72–74].

There are two main types of functionalization, namely
a covalent one, with the covalent bond formation, and non-
covalent, due to the van der Waals forces only. Most of

the works deal with covalent functionalization, and only a
few of them [26, 27, 76–80] treat the non-covalent one
which is, of course, not surprising. First, the covalent
functionalization results in much stronger modification of
geometric and electronic structures of graphene. Second, most
of the density functional codes used now do not allow one to
include the effects of the van der Waals interactions [81–83]
playing a crucial role in the non-covalent functionalization.
In those cases the local density approximation (LDA) [84]
is mostly used, instead of the standard generalized gradient
approximation (GGA) [85] which gives usually rather good
results for layer compounds, such as graphite, hexagonal boron
nitride and MoS2, due to error cancellation [86].

Sometimes, the chemical functionalization in graphene is
related to the ionic chemical bond. There are the cases of
graphene layers in graphite intercalated compounds [87, 88]
and graphene layers at metal surfaces [89–99, 36, 101]. This
type of functionalization is important to study possible super-
conductivity in graphene, by analogy with the superconducting
intercalates CaC6 and YbC6 [102, 103].

Here we restrict ourselves only by the case of covalent
functionalization of graphene. We will start with the
hydrogenation of graphene, as a prototype of chemical
functionalization (section 3). In section 4, other examples
will be considered, including realistic models of the
functionalization by diatomic molecules, such as O2 and HF.
In section 5 we will discuss effects of finite width on the
functionalization of the graphene nanoribbons (GNR). We will
give a summary of the work and discuss some perspectives in
section 5.
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2. Computational method

Our calculations have been performed with the SIESTA
code [104–107] using the generalized gradient approximation
(GGA) [85] to DFT and Troullier–Martins [108] pseudopo-
tentials. We used an energy mesh cutoff of 400 Ryd and
a k-point mesh in the Monkhorst–Pack scheme [109]. Dur-
ing the optimization, the electronic ground states were found
self-consistently by using norm-conserving pseudopotentials
to cores and a double-ζ plus polarization basis of localized or-
bitals for carbon, oxygen and fluorine, and a double-ζ one for
hydrogen. Optimization of the bond lengths and total energies
was performed with an accuracy of 0.04 eV Å

−1
and 1 meV,

respectively.
In our study of geometric distortions induced by the

chemisorption of a single hydrogen atom which will be
described below (section 3), a supercell containing 128 carbon
atoms with a k-point 4 × 4 × 1 mesh is used. For the
cases of maximal coverage of graphene by various chemical
species (section 4) the standard elementary cell of graphene
with two carbon atoms is used, similar to the case of full
hydrogenation [24], with a k-point 20 × 20 × 2 mesh. To
simulate interaction of bulk graphene with hydrofluoric acid
the supercell with 8 carbon atoms is used, similar to our
previous works [24, 46, 25] with a k-point 11 × 11 ×
1 mesh. To investigate chemical functionalization of graphene
nanoribbons (section 5) zigzag stripes with widths of 22 and 66
carbon atoms are used, similar to [41], with a 1×13×1 k-mesh.

For each step of the functionalization, its energy is defined
as Echemn = En − En−1 − Eads, where En and En−1 are the
total energies of the system for nth and n − 1th steps, and
Eads is the total energy of the adsorbed molecule. In contrast
with the standard definition of chemisorption which we used in
the previous works, this definition allows us to evaluate energy
favor or disfavor of each step separately. We choose Eads as
a total energy of the corresponding molecule in the gaseous
phase. This is the most natural choice to estimate the stability
of chemically modified graphene. This is the crucial issue, for
example, for the case of graphite oxide where the desorption
of hydroxy groups is the main obstacle in deriving a ‘cheap
graphene’ [46]. Note that molecular oxygen exists in both
triplet (spin-polarized) and singlet (non-spin-polarized) states,
the former being more energetically favorable by 0.98 eV (we
have found for this energy difference the value 1.12 eV). We
will use here, as well as in the previous work [46], the energy of
singlet O2; to obtain the data with respect to magnetic oxygen
one needs merely to shift up the presented energies by 1.12 eV.
When considering oxidation of nanotubes both the energy of
singlet [110–113] and triplet [114, 112, 113] oxygen is used.

3. Hydrogen on graphene

Hydrogenation of carbon nanoobjects is a subject of special
interest starting from the discovery of fullerenes [115], due
to the potential relevance of this issue for the hydrogen
storage problem and its general scientific importance for
chemistry. Soon after the synthesis of the first fullerenes
theoretical [116, 117] and experimental [118] works appeared

Figure 1. Optimized geometric structure of C60H2.

on the minimal hydrogenated fullerene, C60H2. It was
shown in these works that the most stable configuration of
hydrogen on the fullerene corresponds to the functionalization
of the neighboring carbon atoms (1, 2, according to chemical
terminology, see figure 1). Further investigations result in
the discovery of numerous systems with larger contents of
hydrogen, up to C60H36 [119]. Further hydrogenation of the
fullerenes turns out to be impossible, due to their specific
geometric structure. It is important that all known stable
compounds C60Hx contain even numbers of hydrogen atoms.
Together with other known facts [2, 3] it allowed us to
formulate the main principle for the hydrogenation of the
fullerenes: hydrogen atoms can be bonded either with the
neighboring or with the opposite atoms in carbon hexagons (1,
2 or 1, 4, in chemical terminology). Another issue of special
interest was magnetism of hydrogenated fullerenes caused by
unpaired electrons on broken bonds. This can be realized
only for odd numbers of hydrogen atoms per buckyball [120].
Unfortunately, these hydrogenated fullerenes are unstable and
observed only as intermediate products of some chemical
reactions; for even numbers of hydrogen atoms magnetism
does not survive and disappears in time [121]. It is worth
noting that the hydrogenated fullerenes themselves are quite
stable chemically and do not lose hydrogen even under the
action of high pressures [122].

The discovery of single-wall carbon nanotubes [123, 124]
(in the following we will discuss only this kind of nan-
otube) and successful attempts at their reversible hydrogena-
tion [125, 126], which makes the nanotubes more prospective
materials for hydrogen storage than fullerenes, have inspired
numerous theoretical models of nanotube hydrogenation. The
geometric structure of the nanotubes differs essentially from
that of the fullerenes. Single-wall carbon nanotubes can be
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represented as a graphene scroll of length up to a few microns
and width 1–1.5 nm.

Importantly, armchair and zigzag nanotubes exist with
different structures of the honeycomb net on their surface, and
the nanotubes can be chiral which is essential for their chemical
functionalization [4]. To avoid these complications, graphene
is frequently used to simulate chemical functionalization of
the nanotubes [11–15]. However, as was discussed in [24],
a curvature radius of typical nanotubes (1.0–1.5 nm) is
comparable with the radius of geometric distortions induced
by hydrogen. Effects of the curvature of nanotubes on
hydrogenation was studied in detail recently [127] and
appeared to be quite essential, the hydrogenation being
different in two directions, along and around the nanotubes.
The influence of different types of chirality on the chemistry
of nanotubes and differences with graphene was also discussed
in [128, 129].

Let us discuss briefly the main results of these works.
Potential barriers for the cases of adsorption of a single
hydrogen atom on graphene and several types of nanotubes,
as well as formation of hydrogen chains on graphene and
around the nanotubes, have been studied in [13]. Modification
of the electronic structure of perfect graphene and graphene
with the Stone–Wales defect at the adsorption of a single
hydrogen atom was discussed in [11]. The authors [12]
investigated a relation of magnetism with chemisorption of
hydrogen for perfect graphene and for two types of defects,
that is, monovacancy and interlayer carbon atoms in graphite.
Sluiter and Kawazoe [14] used the cluster expansion algorithm
to find the most stable configuration for complete coverage
of graphene by hydrogen, to model the hydrogenation of
nanotubes. This configuration corresponds to so-called
graphane which has been studied afterwards by the DFT
calculations [23, 24]. Wessely et al [15] simulated the core
level spectra of carbon for the case of chemisorption of a single
hydrogen atom on graphene, to interpret existing experimental
data on hydrogenated nanotubes.

Graphene was also used to model the hydrogenation
of graphite [130–133]. After the discovery of graphene
several works have been carried out on the hydrogenation of
graphene itself, to modify its physical properties. In [44] the
chemisorption of a single hydrogen atom was studied in more
detail than before, as well as interactions of magnetic moments
arising, due to unpaired electrons, at the hydrogenation of
carbon atoms belonging to the same sublattice (it was shown
that in this case the interaction turns out to be ferromagnetic).
At the same time, according to [44] the combination of three
hydrogen atoms (two of them belonging to sublattice A and
the third one to sublattice B) remains magnetic which may be
important in the light of discussions of potential magnetism of
carbon systems.

Sofo and co-workers [23] considered theoretically a
hypothetic material, graphane, that is, graphite with completely
hydrogenated carbon layers (in each layer, all hydrogen atoms
coupled with one sublattice are situated above, and with
another sublattice below, the layer). This structure corresponds
to weakly coupled diamond-like layers, with sp3 hybridization,
instead of sp2 in graphite. This change of hybridization results

Figure 2. Band structure of a single graphene layer. Solid red lines
are σ bands and dotted blue lines are π bands.

in opening a gap of order 3 eV in the electron energy spectrum,
due to a transformation of π and π∗ orbitals to σ and σ ∗ (see
figure 2). The cohesive energy was found to be relatively small
(of the order of 0.4 eV per hydrogen atom) which allows us
to make the process of hydrogenation reversible [24]. Roman
and co-workers [42, 43] considered different configurations of
hydrogen on graphene for the case of one-side hydrogenation
and have found that configurations when hydrogen atoms are
bonded with different sublattices (similar to figure 3(c)) are
the most stable. In our work [24] some general principles
of hydrogenation of graphene have been formulated based on
calculations for various configurations in a broad range of
coverage.

Carbon atoms in graphene are in the sp2 hybridization
state when each carbon atom has three σ and one π orbitals
(figure 2). In contrast to numerous polyaromatic hydrocarbons
with localized single and double bonds π -orbitals in graphene
are delocalized and all conjugated chemical bonds are
equivalent. Chemisorption of hydrogen atoms means a break
of one of the π bonds and transformation from sp2 to sp3

hybridization. At the same time, unpaired electrons, one of
those forming the π -bond, remain at the neighboring carbon
atoms. This electron is smeared in one of the sublattices
(figures 4(b) and (a)) and forms a magnetic moment. The
distribution of spin density in a radius of 1 nm correlates with
distortions of the crystal lattice (figure 4(b)). However, this
situation is not robust in a sense that the chemisorption of the
next hydrogen atom bonds this unpaired electron and kills the
magnetic moment [24].

Thus, the first principle of chemical functionalization
is the absence of unpaired electrons or, in other words,
of dangling bands. As a consequence of this principle,
chemisorption of functional groups on different sublattices are
much more energetically favorable than on the same sublattice.

The next principle is a minimization of geometric
frustrations. One can see in figure 4(b) that the chemisorption
of a single hydrogen atom results in essential atomic
displacements inside a circle of radius 5 Å (two periods of
the graphene crystal lattice) and in smaller but still noticeable
distortions with a characteristic radius 10 Å (figure 5). The
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Figure 3. A schematic representation of chemical bonds in (a) pure
graphene (dashed lines correspond to delocalized double bands),
(b) graphene with single chemisorbed hydrogen atom (white circle,
the black circle corresponds to unpaired electron at the broken bond,
it distributes in the sublattice shown in red (dark)), (c) graphene with
chemisorbed pair of hydrogen atoms (nonequivalent sublattices are
shown in different colors).

chemisorption of a single hydrogen atom leads to a strong
shift up of the carbon atom bonded with the hydrogen
and a shift down for two neighboring atoms. It is worth
noticing that if one fixes positions of all carbon atoms except
nearest and next-nearest neighbors of the central atom [136]
it changes essentially the picture of atomic displacements.
Such a procedure may be reasonable to simulate chemical
functionalization for constrained systems such as graphene on
graphite [150], Ru [95, 96, 98], Ir [97] and Pt [98] where part
of the graphene lattice is strongly coupled with the substrate.

Chemisorption of the next hydrogen atom is more
favorable when it results in minimal additional distortions.
This means that the most energetically stable configuration
arises if two hydrogen atoms are chemisorbed by neighboring
carbon atoms at different sides with respect to the graphene
sheet. One can see in figure 4(b) that in this case no
essential additional atomic shifts are necessary. If only one
side is available for the chemisorption the most favorable
configuration of two hydrogen atoms is the bonding with
carbon atoms in opposite corners of the hexagon in the
honeycomb lattice (sites 1, 4, or para-position, according to
chemical terminology) [25]. For the case of two more distant
hydrogen atoms they should migrate to this optimal position

Figure 4. Charge distribution for unpaired electron as a function of
the distance from the central carbon atom where hydrogen is
chemisorbed (a) and deviations of carbon atoms from flat
configuration for the cases of single hydrogen atoms (red (dark) line)
and two atoms chemisorbed on neighboring sites from different sides
of the graphene sheet (green (light) line) (b).

Figure 5. Regions of strong (blue circle) and weak (yellow (light)
circle) distortions of graphene lattice at the chemisorption of a single
hydrogen atom (small red (dark) circle).

overcoming some potential barriers [135], which was observed
experimentally for both graphite [130] and graphene [134].

These two principles of chemical functionalization predict
that in the most stable configuration for a hydrogen pair on
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Table 1. Dependence of the carbon–carbon bond length (d), in Å,
and the electron energy gap (�E), in eV, on chemical species for the
case of 100% two-side coverage of graphene.

Chemical species d �E

NO 1.622 None
NH2 1.711 2.76
CN 1.661 2.11
CCH 1.722 0.83
CH3 1.789 0.84
OH 1.620 1.25

H 1.526 3.82
F 1.559 4.17
H and F 1.538 5.29
H and Cl 1.544 4.62

graphene the hydrogen atoms will sit on neighboring carbon
atoms at opposite sides with respect to the graphene sheet. Due
to geometric distortions a region of radius 5 Å around the pair
is more chemically active than pure graphene, similar to the
case of graphene with defects [12, 37, 40, 39, 41] and, thus,
the next hydrogen atoms will be chemisorbed near the pair. In
the case of graphene with defects this process involves some
potential barriers whereas for ideal infinite graphene it will
proceed without any obstacles, up to complete hydrogenation
and formation of graphane.

In further works [35, 136] the results [24] on the stability
of nonmagnetic pairs of hydrogen on graphene and on the
formation energies have been confirmed; also the case of
polyaromatic hydrocarbons C54H18 [35] and C42H16 [136] and
C96H24 [137] being considered. A recent paper [138] dealing
with adsorption and desorption of biphenyl on graphene
demonstrates the importance of step-by-step simulation of the
chemical reaction.

It is instructive to compare peculiarities of the chemical
functionalization of graphene and carbon nanotubes. Similar
to graphene, in nanotubes the most favorable place for
chemisorption of the second hydrogen atom belongs to the
opposite sublattice with respect to the first one [127]. There
is no direct experimental evidence of this structure for the case
of hydrogen: however, for other functional groups it is known
that normally they are attached to pairs of neighboring carbon
atoms [4, 9, 10]. Minimization of geometric frustrations plays
an important role also in the case of nanotubes. In contrast
with flat graphene, a particular shape of the nanotubes makes
the chemisorption from the external side more favorable, with
the adsorbed pairs situated along the nanotube. For large
enough groups they are usually attached to opposite sides of
the nanotube cross section [4], again, to minimize the carbon
net distortions. In contrast with graphene where complete one-
side hydrogenation is unfavorable for the case of nanotubes it
turns out to be possible from the external side, as is shown both
theoretically [13] and experimentally [125, 126].

4. Functionalization of graphene by other chemical
species

As discussed above, graphane is not very stable which is
actually quite good from the point of view of hydrogen storage

Figure 6. Top and side view of graphene functionalized by CH3

groups (optimized atomic positions). Carbon and hydrogen atoms are
shown in green (darker) and white, respectively.

since it allows us to hydrogenate and dehydrogenate graphene
at realistic temperatures [29]. At the same time, for potential
use of graphane in electronics this can be considered as a
shortcoming. Therefore it is interesting to consider other
functional groups to search for a compound with an electronic
structure similar to graphane but with larger cohesive energy.

The computational results are presented in table 1 and
figure 6. Based on them one can divide all the functional
groups into two classes: (a) with the energy gap of order 3 eV
and large enough cohesive energy and (b) with much weaker
bonding and much smaller energy gap, or without a gap at
all. This difference can be related with the length of chemical
bonds between carbon atoms (carbon–carbon distance). For
substances from the first class it is almost equal to that in
diamond, 1.54 Å, whereas for substances from the second class
it is larger. This means that for the latter case, due to mutual
repulsion of the functional groups, graphene is destabilized
which diminishes the cohesive energy. This situation is
observed experimentally in graphite oxide which cannot be
completely functionalized due to interaction between hydroxy
groups [46], in agreement with the XPS data [140].

As examples of chemical species which can provide,
similar to hydrogen, a complete coverage of graphene, we will
consider F2, HF and HCl. Fluorine seems to be very promising
for the functionalization of graphene since it should produce
a very homogeneous structure, with a complete coverage by
atoms of the same kind. Therefore, this might be a way to
create a two-dimensional crystal with a rather large energy gap
but high electron mobility, due to a small degree of disorder.
However, fluorine is very toxic and very aggressive, which
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Figure 7. A sketch illustrating processes and energetics of different
reactions of graphene with hydrofluoric acid. White and red (dark)
circles are hydrogen and fluorine atoms, respectively; all energies are
in eV.

may be a problem for industrial use. Also, fluorine is used for
ripping of nanotubes [141, 142] which means that, potentially,
edges and defects of the graphene lattice interacting with the
fluorine can be centers of its destruction. Actually, graphene
samples are always rippled [143–148] or can be deformed as
observed for graphene ribbons [74].

Let us consider now, step by step, the interaction of
graphene with the inorganic acids HF and HCl. The
process of functionalization of graphene by HF starts with the
chemisorption of fluorine and hydrogen atoms at neighboring
carbon sites at the same side of the graphene sheet (figure 7).

As a first step of chemisorption of hydrofluoric acid
molecules we consider bonding of hydrogen and fluorine
atoms with the neighboring carbon atoms at the same side of
the graphene sheet (figure 7(a)). In contrast with molecular
fluorine where the chemisorption energy is negative (see
above) the energy of this step turns out to be positive,
+1.46 eV, mainly due to strong distortions of the initially
flat graphene at the one-side functionalization. As the next
step, we consider chemisorption of one more H–F pair
from another side of graphene (figure 7(b)). Similar to
chemisorption of the second hydrogen atom (see above) this
step is energetically favorable, with the formation energy
−1.85 eV. Reconstruction of the structure shown in figure 7(c)
diminishes the total energy by 0.33 eV, which makes this a
possible third step of the process under consideration. After
that, the chemisorption energy of a third HF molecule turns
out to be much smaller than for the first one but still positive,
+0.27 eV (figure 7(d)). Starting from the fourth molecule,

Figure 8. Optimized geometric structure for step-by-step adsorption
of oxygen molecule on graphene.

the chemisorption energies are negative so further reaction
is exothermal. As a result, complete coverage of graphene
by hydrofluoric acid is energetically favorable but requires
high enough energy for the first step. This means that, most
probably, bulk graphene without defects will be stable enough
with respect to reaction with HF, at least at room temperature.
It seems to be practically important since hydrofluoric acid
is used to solvate an SiO2 substrate when preparing freely
hanging graphene membranes [150, 151]. One can expect in
this case a formation of a chemically modified layer near edges
with essentially different electronic structures (see below).

Our calculations show that the first step of the
functionalization of graphene by hydrochloric acid is
essentially different, due to a larger interatomic distance
(1.27 Å for the HCl pair, instead of 0.97 Å for HF) which
is close to the carbon–carbon distance in graphene (1.42 Å).
As a result, there is no breaking of bonds between hydrogen
and chlorine but, instead, the HCl molecule hangs over the
graphene layer, bonding with it by only a weak van der Waals
bond and there is no chemical reaction. Thus, hydrochloric
acid can be safely used to clean bulk graphene.Regions near
edges or defects in graphene can in principle be functionalized
by HCl, similar to the case of hydrogen considered in [41].

Let us consider now, using an oxygen molecule as an
example, a chemisorption of a diatomic molecule with a double
chemical bond. In this case, at the first step the double
bond will transform into the single one, with formation of
single bonds with neighboring carbon atoms (figure 8). This
reaction requires overcoming some energy barrier which is,
however, rather low since the flexibility of graphene allows it
to minimize the energy costs due to lattice distortions. Bilayer
graphene is much less flexible (out-of-plane distortions of the
graphene layer are 0.53 Å and 0.11 Å for the cases of single
layer and bilayer, respectively), due to interlayer coupling,
which makes the chemisorption energy higher, in agreement
with the experimental data [154].

If we would calculate the chemisorption energy with
respect to not the singlet but the triplet state of O2 molecules

6
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it would increase all chemisorption energies by 1.12 eV (see
section 2). The resulting energies are so high that it seems
in contradiction with the experimental fact that graphene
is relatively easily oxidized already at temperatures up to
200 ◦C [154]. Also, the ‘unzipping’ process at the oxidation
of graphite observed experimentally [71, 152] will involve
energetically unstable states. Graphene oxide turns out also to
be unstable with respect to triplet oxygen [46, 155]. Probably
these discrepancies mean that formation of singlet oxygen
plays some role in these processes. This issue requires further
investigation. A similar problem was discussed earlier for
nanotubes [110].

Oxidation energy for graphene turns out to be lower than
for the case of nanotubes [110, 111]. In the latter case,
π -orbitals are rotated with respect to each other [7] which
makes formation of oxygen bridges between carbon atoms
more difficult.

Previous computational results for oxidation of graphene
[153] are qualitatively similar to ours. However, the energy of
cyclo-addition there is higher than achieved in our calculations.
There are two possible reasons for this difference: the
use of LDA in [153] instead of GGA in our calculation
(overestimation of covalent bonding energy for hydrogen on
graphene within LDA is discussed in [24]) and the use of very
narrow armchair graphene nanoribbons (three hexagon width)
instead of an infinite system with periodic conditions here.

Let us consider now another important issue, the
simulation of the reduction of graphite oxide (GO). We have
proposed earlier [46] models of this compound with different
degrees of reduction. In [155] a process of the reduction has
been studied and the scheme of the corresponding reactions
has been proposed. Using our model and this scheme, we
have simulated three possible ways for the chemical reduction
of GO depending on degree of preliminary reduction and
calculated the corresponding energies (figure 9). To compare,
we have calculated also energy costs of direct reduction
(e.g. by heating). One can see from the figure that for
high degrees of coverage of GO (weakly reduced) energy
costs of chemical reactions are smaller than those of the
direct reduction whereas for the case of strongly reduced
GO, and vice versa, direct total reduction turns out to be
more energetically favorable. Similarly, other reactions of
real [49, 47] and potential functionalization of GO can be
simulated which may be important in searching for ways for
its complete reduction to pure graphene.

5. Functionalization of graphene nanoribbons

Polyaromatic hydrocarbons (PAH) [173] are quite close
to graphene nanoribbons (GNR), and their chemistry, in
particular, hydrogenation of their edges, is rather well
studied [160]. Other nanoobjects which can be considered
as predecessors of GNR are nanographite and nanographite
intercalates which were studied, in particular, in connection
with their magnetism [156, 157]. Model calculations of their
magnetic properties are presented in [156, 157] whereas first-
principles calculations, using a fragment of graphene sheet as
a model of nanographite, have been performed in [159]. In

Figure 9. Sketch of chemical reduction of graphene oxide [155] for
various degrees of its functionalization. All energies are in eV.

that paper, functionalization of the graphene edges by a single
hydrogen atom has been considered, as well as suppression of
magnetism by fluorination, in relation with the experimental
data [158].

Starting from the first work by Louie and co-workers [52]
predicting, on the basis of DFT calculations, a half-metallic
ferromagnetic state of zigzag graphene edges, this problem
attracts serious attention [54, 64]. Later, the first results have
been reconsidered by the same group using a more accurate
many-body GW method [55]. Chemical functionalization of
GNR is currently one of the most popular subjects in graphene
science.

Hod et al have considered the effects of the shape
of semiconducting GNR on their stability and electronic
structure [57], electronic structure of graphenic nanodots [58]
(similar calculations of magnetism and electronic structure
have been presented also in [62]), effects of geometry of
graphene nanosheets on their electronic structure [59] and
enhancement of half-metallicity due to partial oxidation of
the zigzag edges [60]. Interesting effects which can arise
in graphene nanoflakes are discussed in [53]. Usually, it
is supposed in these calculations that edges of nanoflakes
are passivated by hydrogen atoms [58, 59, 53, 161–164] but
sometimes pure edges are considered [165, 166]. The real
structure of some graphene nanoflakes was discussed in [167].
In general, the state of real graphene edges is not well
understood yet and this very important problem needs further
investigation.

In [61] the effect of vacancies at the edges of the electronic
structure of GNR were studied. Influence of chemisorption of
different chemical species on the electronic structure of GNR
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was investigated in [56, 63]. Reference [65] considered the
chemisorption of molecular oxygen on GNR and its effect on
their magnetism. Various configurations of hydrogenated [69]
and self-passivated [70] GNR were studied; in both cases the
nonmagnetic state of GNR turned out to be the most stable.
References [41, 68] demonstrated suppression of magnetism
at the zigzag edges by oxidation. Since the latter is a natural
process in the production of GNR [74, 75, 168] some special
measures to protect the magnetism chemically are probably
necessary.

Thus, works on the functionalization of GNR can be
divided into three groups. First, there are investigations
of electronic structure and physical properties (especially
magnetism) of the edges themselves. This group includes
most of the theoretical works. Second, there are works
studying the functionalization of the nanoribbons between
the edges. It seems that the effect of the edges on the
electronic structure of GNR is long range enough and, as
a consequence, the chemistry of GNR can be essentially
different from that of bulk graphene. Research in this
direction is just starting. Third, there are attempts to find
optimal geometric and chemical structures of GNR taking into
account realistic technological processes of their formation.
As a preliminary, there is an impression that some structures
considered theoretically before can be very different from
the real ones, so we are, indeed, only at the beginning of
the way. On the other hand, a lot of experimental and
theoretical information is available for related compounds
such as arynes [169], polyhexacarbons [170] and polycyclic
aromatic hydrocarbons [171] which may also be relevant for
GNR.

It was shown in our previous work [41], using hydrogen
as an example, that the edges of GNR are centers of chemical
activity and their functionalization can be just a first step
to the functionalization of the whole nanoribbon. Here we
will consider step by step the oxidation process of GNR.
The computational results are presented in figure 10. Thus,
oxidation of GNR is a chain of exothermal processes. This
result may be relevant also for a better understanding of
burning and combustion of carbon systems. These issues,
as well as more detailed results concerning oxidation and
unzipping [71] of graphene and related compounds, will be
discussed elsewhere.

Let us consider now a reaction of GNR with hydrofluoric
acid. A scheme of this reaction for a nanoribbon of
width 2.2 nm is shown in figure 11(a) and dependence
of the energy as a function of coverage is presented in
figure 11(b). In contrast with the case of ideal infinite
graphene for narrow enough GNR are two steps with positive
chemisorption energy. This energy cost is so small that
the process of hydrofluorination of this nanoribbon can take
place even at room temperature. The situation is essentially
different for a nanoribbon of width 6.6 nm. The steps
with positive chemisorption energy just disappear, due to the
larger distance between the regions of the reaction. Thus,
the hydrofluorination of a broad enough GNR is easy and
complete.

One can see that, similar to the case of hydrogenation [41]
(see also section 4), GNR are very chemically active which

Figure 10. A scheme of step-by-step oxidation of GNR of width
2.2 nm. All energies are in eV (top panel). Optimized geometric
structure for partially oxidized GNR (lower panel).

probably means that at least some of their applications will
require an inert atmosphere.

6. Conclusions and perspectives

In section 3 we discussed, using hydrogenation as an
example, three main principles of chemical functionalization of
graphene: (i) broken bonds are very unfavorable energetically
and, therefore, magnetic states on graphene are usually very
unstable; (ii) graphene is very flexible, and atomic distortions
influence strongly the chemisorption process; and (iii) the
most stable configurations correspond to 100% coverage
for two-side functionalization [24] and 25% coverage for
one-side functionalization [25]. Based on these principles
one can model the functionalization of not only perfect
graphene [24, 25, 46] but also graphene with intrinsic and
extrinsic defects which are centers of chemical activity [41].

In section 4 we have studied chemical functionalization of
graphene by fluorine and hydrofluoric acids. They can provide
complete coverage and, thus, a semiconducting state with large
enough electron energy gap and weak disorder. Alternatively,
non-covalent functionalization can be used to create the gap.

The current situation seems to be a bit controversial.
In some papers [27, 26] an energy gap opening due to
physisorption of various molecules has been found, in contrast
with other results [76, 77, 16, 78, 17]. It is difficult to
compare these works directly since they are, in general, done
for different chemical species and concentrations. However,
keeping in mind that in some cases [77, 78, 26] the same case
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(a)

(b)

Figure 11. A scheme of step-by-step reaction of GNR of width
2.2 nm with HF; the energies are in eV (a). The same energies as
functions of coverage for the case of GNR with width of 2.2 nm
(red solid line) and 6.6 nm (green dashed line).

of water has been studied one can conclude that the electronic
structure is very sensitive to the specific concentration and
specific geometric configuration of water on the graphene
surface. At the same time, one should keep in mind that
a very specific structure of water [172] and other hydrogen-
bonded substances may not be very accurately reproduced in
the DFT calculations. Probably, only a combination of the
DFT, quantum chemical calculations and molecular dynamics
can clarify the situation.

Anyway, since the cohesive energy at physisorption does
not exceed 20 kJ mol−1 the physisorbed graphene cannot be
very robust, which may result in some restrictions of its use in
electronics.

We have demonstrated using HF as an example that it is
important to simulate the chemisorption process step by step
since it allows us to estimate accurately chemisorption energies
relevant for each step of the process. It turns out that for perfect
infinite graphene the energy cost of the first step for the case of
HF is rather high whereas for HCl this reaction is practically
impossible. This means that these acids can be safely used for
cleaning of graphene samples. At the same time, the energy
cost of oxidation is rather low, which makes even moderate
annealing of graphene in oxygen-contained atmosphere not a
very safe procedure.

We have shown also, in the last section, that the
graphene nanoribbons are chemically active enough to be
oxidized and to interact with hydrofluoric acid with relatively
low chemisorption energy of the first step of reaction. It
means that to prepare the graphene nanoribbons with a given
chemical composition alternative ways should be used, e.g. its
synthesis from polyaromatic hydrocarbons [173, 174, 167] or
even use of microorganisms as is used already for biogenic
growth [175, 176] and cleaning [177].
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Mårtensson N 2008 Phys. Rev. B 78 073401
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